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The Performance of the Intel i860XP TM

King Lee

Abstract

The Intel i860XP TM is a second generation i860 TM microproces-

sor used in the Intel Paragon supercomputer. The most important

architectural change was the new pipelined quadload instruction. We

compared the performance of simple kernels using and not using this

new instruction and found that this instruction substantially improved

performance. We also compared the performance of subroutines us-

ing the NAS860 library with the performance of compiler generated

code. We found that in many cases the code generated by the com-

piler performs as well as code using the NAS860 library. However, the

performance of code generated by the compiler can, in some cases, be

signficantly improved by simple transformations.

1 Introduction

The Paragon supercomputer manufactured by Intel is based on the i860XP TM

microprocessor. Previous models of this line of supercomputers were based

on the i860XR TM, and we expect improvement in performance in each node.

This section will review the new features of the chip and evaluate, from a

theorectical point of view, what performance gains we might hope to get.

The most important architectural feature for scientific applications is the

quadload instruction which can be used only under some circumstances. In

the next section we measure the performance of simple kernels that use this

instruction. Since the performance of the short kernels is not a good in-

dication of the performance that one can get on realistic applications, the

performances on several simple subroutines taken from an ADI Solve were

measured in section 3.
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We expect improvements in performance due to the following features of

the chip:

• increased clock speed of 50 MHz instead of 40MHz;

• increased instruction and data cache sizes of 16K each instead of 8K;

• a redesigned memory subsystem that, among other features, allows for

memory burst mode that increases memory bandwidth by 67 percent.

• a new pipelined quadload instruction that can load two adjacent double

precision numbers every three clocks([6]). The lower address of the two

double precision numbers must be aligned on a 128 bit boundary and

the destination must be aligned floating point registers.

• better performance for the mulitply instructions. For some values of

the operands, the multiply unit stalls for two clocks (page C-2 in [1]).

For codes that use cache one might expect improvements in performance

due to the following factors: (1) a cache miss will be filled more rapidly

because of the increased memory bandwidth and (2) the miss ratio of the

i860XP TM will decrease due to the larger cache. Since time to fill a cache

line consists of a latency as well as transmission time, we should not expect

the penalty for a cache miss to decrease 67 percent. Assuming an eight clock

latency to fill cache (the same as on the i860XR TM ), and a transmission

time of six instead of eight clocks, we would expect the time to fill a line of

cache to decrease by about 33 percent (20 percent due to increased speed,

and 12 percent due to fewer clocks). Furthermore, a 16K cache might give a 6

percent miss ratio (see page 486 of [2]). Therefore, for programs that work out



of cache,the increasedbandwidth will improvethe performanceof 6 percent

of the instructions. We point out that the actual fraction of instructions

involving memory operations and the actual miss ratio vary greatly from

program to program and somescientific programsmay have a higher miss

ratio.

The i860TMmicroprocessorhasa pipelinedload instruction that bypasses

cache. In apreviouspaper([3]) the author showedthat the pipelinedload in-

struction couldmovedata from memoryto registerstwice asfast asusingthe

normal load instruction which loadeddata into cache.In subsequentpapers

([4], [51)the author developeda library, the NAS860library, of subroutines

that simulated vector operations. On somevector operations the perfor-

mancewas limited by the memorybandwidth. The new pipelined quadload

instruction on the i860XPTM has the potential to increaseperformanceof

thosevector instructions. But this instruction is restricted to operandscon-

tiguous and aligned on quadword boundaries. The instruction cannot be

usedto accessvectorswith non unit stride. Sometimesit is not possibleto

havevectorsaligned. For example,if wehavevectorsx,y,zand the loops

do 100i = 1, 128

100 y(i) = a • x(i)

do 200 i = 1, 128'

200 z(i) = x(i+l) + z(i)

the vector x cannot be aligned in both loops. However, this restriction is

more apparent than real. If a vector is not aligned, we might handle the



first elementof the vector asa specialcaseand the rest of the vector will be

aligned.

Evenif wewereableto usethe pipelinedquadloadinstruction, weshould

not expectdramatic improvementsin performancefor all subroutines.Con-

sider the subroutine or vectoroperationvml from the NAS860library ([5]):

100

doi=l,n

ylm(i)= a • x(i)

continue

On the i860XP TM the multiply pipeline can produce one result every two

clocks. If we used the pipelined quad load instruction, the multiply unit

would not be able to keep up so it would still take two clocks to perform one

iteration of the loop. In this case the effect of increased memory bandwidth

will be restricted to minimizing loop overhead for this subroutine.

The reader should keep in mind that the performance of the Paragon

supercomputer depends on the communication performance between nodes

as well as the performance on each node. The time spent on communication

may hide the improvement in performance due the i860XP TM. For example

if one gets a 30 percent performance increase in the chip, and a 10 percent

performance increase in the faster inter node communication system, and

if half the time is spent communicating, then one might see a 20 percent

improvement in performance.
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2 Measurements

A number of subroutines were selected from the NAS860 library and the

performances of those subroutines were measured. The time measurements

were taken 400 times with vectors of length 160. The performance reported

is based on the average value of the performance. Examination of the times

measured showed a variation as much as much as a 20 percent variation

between the shortest and largest time for most of the times. The value of

160 for the vector length was chosen because it was sufficiently large so we

could obtain the asymptotic average performance and sufficiently small so

that the all vectors could fit into one set of the cache.

Table 1 gives the results of the measurements. The column labeled Quad

gives the measured performance on the i860XP TM using the pipelined quad

load instruction (if applicable). The column labeled No-Quad gives the per-

formance of the subroutine without using the pipelined quadload instruction.

This column gives performance for accessing vectors With non-unit stride.

The first subroutine was lv which moves data from main memory into

cache. The Quad version uses the quad pipelined load instruction to move

data to registers and a quad store instruction to cache. The measured perfor-

mance was 24.5 MWDS (million double precision words per second), whereas

the theoretical peak performance would be 33.3 MWDS (two words every

three clocks). Two factors may have caused us to get only 74 percent of the

peak performance. First, there may have been some loop overhead that was

not hidden. Second, an examination of the individual times that went into

computing the average showed that there were several times (outliers) that

were much larger than most of the other times. The cause of the outliers



Table 1: Performanceof somesubroutines

Mflops

Subroutine

iv

uv

vvm

vml

vm2

vr

vrla

vnrml

va2

vva4

vvms

vvml

vvmla

vvsl

vvm4c

vvm5c

vvs4c

vts5a

vts4

Quad

24.5

21.5

na

12.3

20.1

na

26.0

34.5

19.7

18.7

na

13.3

9.2

14.0

5.5

6.3

5.6

, 11.0

16.0

No-Quad

13.6

9.1

21.2

11.0

8.8

3o.ot
24.0t

30.2

8.8

8.5

36.5

9.4

7.5

10.4

4.2

4.3

4.3

8.8

13.3

t assume 10 FLOPs per reciprocal( [41 )
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may be due to messages passing through the node and taking up memory

bandwidth or memory refresh. Using the pipelined load instruction we mea-

sured 13.6 MWDS which is only 54 percent of the peak performance of 25

MWDS. It is not clear why we saw such a small fraction of the maximum

theoretical bandwidth.

The subroutine uv moves data from cache to main memory. Using quad-

store we get only 65 percent of the theoretical peak. Without using the

quadload instruction, we get only 9.1 MWDS. Writing to memory is more

complex than reading from memory. The words to be written to memory are

placed in a write queue on the chip and then sent to memory when the bus

is free. Storing into the on chip write queue may take an extra cycle under

some circumstances.

The next routine vvm forms the outer product of two vectors in cache

and stores the result in cache. It is equivalent to the following code:

100

do 100i= 1, n

zlm(i) = xlm(i) • ylm(i).

The quad load and store instructions (which are also available on the i860XR TM)

can be used to access the operands so, there is no need to use the pipelined

quad load instruction available only on the i860XP TM. We achieve about 80

percent of the theoretical maximum performance on the i860XP TM . This

suggests that the larger shortfall from peak performance in Iv and uv may

be due to an artifact of the memory subsystem.

The next subroutine, vnrml, forms the norm of a vector in memory:

dolOOi= 1, n



s =s + x(i)• x(i)
100 continue

We get respectable performance (34.5 MFLOPS) because there are two float-

ing point operations for every memory operation. The subroutine vr forms

the reciprocal of a vector from cache and vrla forms the reciprocal of a

vector from memory and stores it in cache. On the i860XP TM the recipro-

cal is formed by an initial reciprocal approximation, followed by Newton's

iteration. Newton's iteration requires a total of nine floating point multi-

plies and additions. The performance of these subroutines was calculated on

the basis of 10 floating point operation per result. Again these subroutines

get respectable performance because of the large number of floating point

operations compared to memory accesses. The definitions of the remaining

subroutines are given in ([5]). Most of these subroutines involve one floating

point operation and have one or more operands in main memory. For most of

these subroutines, the performance is substantially less than what the peak

performance would predict. However in almost all cases weget substantially

better performance when using the quad load than when we do not.

In summary we still get best results when all operands are in cache. If

one or more of the operands are in main memory, then we can still get a

substantial fraction of peak performance by using the quad load or quad

store. If that is not possible because we have a non-unit stride, we must use

the double precision pipelined loads and stores which give less performance.



3 Subroutines from ADI Solve

The performance figures for short loops, such as those of the previous section,

have two benefits: (1) they can point to weaknesses of the microprocessors

and (2) they can help to give an upper bound on the performance that

one can expect from realistic applications. In order to try to get a better

estimate of the performance we can actually expect from realistic problems

we measured the performance of several of the subroutines found in the ADI

Solve supplied by Dr. Sisera Weeratunga ([41). The performance of some of

these subroutines was measured using the NAS860 library described in the

previous section. For purposes of comparison the performance of subroutines

was also measured using the PGI compiler with flags "-04 -Knoieee -Mquad

-Mvect".

All the subroutines that we considered, except systrd, involved simple

matrix operations with nested loops. The following table gives the measured

performance for the subroutines using 120 by 120 matrices. The second

column gives the performance using the NAS860 routines with pipelined

quadload instructions, the third column gives the performance of the com-

piled subroutine, and the last column gives the performance of the compiled

subroutine with a small amount of hand tuning.

The first subroutine, 12norm; computes the norm of a matrix:

doj=l,n

doi=l,n

nrm = nrm + a(i,j) • a(i,j)

enddo

encldo
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Subroutine

12norm

comptpl

fajl

fail
fail (rev)

fbil
fbilr(rev)

systrd*

NAS860

38.0

23.6

13.6

7.4
10.1

10.1
12.2

19.5

Compiled

18.3

16.2

2.5

4.3
4.7

10.1
10.1

14.4

Compiled
(transformed)

na

na

9.0

6.6
8.4

12.9
6.5

na

* assume10FLOPs per reciprocal ( [41)

Table 2: Performanceof ADI Subroutines(Mflops)

This subroutine essentially usesvnrml repeatedly,and we can get high

performance becauseeach memory referenceresults in two floating point

operations. An examination of the assemblylisting of the compiled code

suggeststhat the compiledcodemovesdata into cachebeforecomputing the

sumof the squares.The NAS860doesnot bother movingdata into cache;it

movesdata to registersand computesthe computation there.

The secondsubroutine comptpl hascode that is a little more compli-
cated:
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doj= I, ncol

do i= i, nrow

templ= c(i,j) - a(i,j)

temp2 = cO,j)- b(i,j)

sum = sum + (ternpl • templ)

asum = asum + (temp2 • ternp2)

end do

end do

This subroutine is similar to the previous loop but it requires more memory

accesses per floating point operation.

The next subroutine, fajl, manipulates some matrices.

do i = 1, nrow

b(i,1) = ap2(i,1)

c(i,1)= an(i,l)

do j = 2, ncol-1

a(i,j) = alml • as(i,j)

b(i,j) = 1.0d+O0 + alto1 • ap2(i,j)

cO,j) = aim1 • an(i,j)

end do

a(i,ncol) ----as(i,ncol)

b(i,ncol) -- ap2(i,ncol)

enddo

Subroutine fajl (Original)
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The inner loop in the original subroutine accessesthe matricesby columns,

and this meansthat weaccessthe memorywith non-unit stride. In preparing

to usethe NAS860subroutines,weinterchangedthe orderof loopsand broke

up the inner loops.

i00

200

300

do i = 1, nrow

b(i,l)= ap2(i,l)

enddo

doi = 1, nrow

c(i.1) = an(i,1)

enddo

do j - 2, ncol-1

do lOOi = 1, nrow

a(i,j) -- aim1 • as(i,j)

continue

do 200 i = i, nrow

b(i,j) = 1.0d+O0 + alrnl • ap2(i,j)

200

do 300 = I, nrow

c(i,j) = alml • an(i,j)

continue

enddo

do i = I, nrow

a(i,ncol) = as(i,ncol)

enddo
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do i = 1, n row

b(i,ncol) = ap2(i,ncol)

enddo

Subroutine fajl (Transformed)

Then each of the inner loops was replaced by a call to a NAS860 subrou-

tine. When the original subroutine fail was compiled we obtained a per-

formance of 2.5 MFLOPS, whereas the NAS860 loops gave a performance

of 13.6 MFLOPS. We then compiled the transformed loops and were sur-

prised to see a performance of 9.0 MFLOPS. Evidently a loop interchange

and decomposition of the loops can lead to substantial improvements in per-

formance.

The next subroutine we considered was fail:

do j = 1, ncol

b(j,1) = ap2(1,j)

cO,l) = ae(1,j)

enddo

doj = 1, ncol

do i = 2,nrow-1

a(j,i) = alml*aw(i,j)

b(j,i) = 1.0d+O0 + alrnl*ap2(i,j)

cO,i ) = alm1*ae(i,j)

end do

end do
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do j= 1, ncol

a(j,nrow) = aw(nrow,j)

b(j,nrow) = ap2(nrow,j)

end do

Subroutine fail (Original)

In the inner loop, the left hand side of the equation is indexed by column (and

large stride) whereas the right side is indexed by row. It is not possible to

have both accesses with stride one. To use the NAS860 library, the program

was transformed to:

do j

do j

= 1, ncol

b(j,l)= ap2(l,j)

enddo

= 1, ncol

c(j,1)= ae(1,j)

enddo

= 1, ncol

do i = 2,nrow-1

a(j,i) = alml • aw(i,j)

end do

do i = 2,nrow-1

b(j,i) = l:0d+00 + alml • ap2(i,j)

end do

do i = 2,nrow-1

c(j,i) = aim1 • ae(i,j)

do

do j

end

end do
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do j = I, ncol

a(j,nrow) = aw(nrow,j)

end do

do j= i, ncol

b(j,nrow)-- ap2(nrow,j)

end do

Subroutine fail (Transformed)

As before, each inner loop was transla;ted to a call to a NAS860 subroutine.

The performances are given in Table 2. We see that the NAS860 subrou-

tine gave the best performance, but the transformed compiled program gave

about 85 percent, and the compiled original subroutine gave 60 percent of

the performance of the NAS860 subroutine.

The original subroutine uses the quadload to load the vectors (inner loops

have unit stride on the right), and non-unit stride on the store. Each of

the inner loops required (1) a subroutine that would load a vector element,

multiply that vector element by a constant, save that element in cache and

(2) a subroutine to load an element from cache and store it in memory in two

of the loops. Since there was more activity on loads, it was conjectured that

if the loads were accessed with non-unit stride any stalls due to the multiply

would be hidden by the longer memory access. To test this conjecture we

interchanged the loops:

doj=l, ncol

b(j,l) = ap2(l,j)

=
enddo
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doi =2, nrow- 1

do j = 1,ncol

a(j,i) = alml • aw(i,j)

b(j,i) = 1.Od-t-O0 -I- alml • ap2(i,j)

c(j,i) = alml • ae(i,j)

end do

end do

doj=l, ncol

a(j,nrow) = aw(nrow,j)

b(j,nrow) = ap2(nrow,j)

end do

Subroutine reversed fail

The performance was measured for this subroutine, the transformed sub-

routine, and the NAS860 version. We see that there is a substantial improve-

ment in the NAS860 and reverse transformed version. While we hoped for

some improvement, the amount of improvement is surprising.

Next, we considered fbil:

do i = 1, inl

do j = 1, jnl

d(j,i) = arm2 • rsd(i,j) • +(z/(1.0 + z ))*delf(i,j)

end do

end do

Subroutine fbil

The corresponding transformed subroutine is:
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dpconstl = z/(1.0d+O0 + z)

do i = I, nrow

do j=1, ncol

xlm(i) = alrn2*rsd(i,j)

end do

doj= 1, ncol

ylm(i) = dpconstl *delf(i,j)

end do

doj= 1, ncol

dO,i ) = xlm(i) 4- ylm(i)

end do

end do

Subroutine transformed fbil

We measured the performance as above, and found that the compiled

program matched the performance of the NAS860 subroutine, but the trans-

formed subroutine surpassed the performance of the NAS860 subroutine.

When we reversed the order of the loops, we found that the NAS860 sub-

routine increased in performance, whereas performance of the compiled code

either decreased or remained the same. The compiler generates code that

calls subroutines that are similar to the NAS860 subroutines. The behavior

of compiled code cannot be explained since the source of the subroutines that

the compiler called is not available.

The last subroutine is systrd, a tridiagonal solve. This subroutine is more

complicated than the other subroutines and will not be discussed here (see

[4] for details). The performance figures reported may be misleading. The

subroutine systerd involved a reciprocal which could be computed rapidly

18



(seethe performanceof vr in Table 1), and we assigned10 FLOPs for a

division. It is usual to arbitrarily assign3 FLOPs for division; doing so

would havedecreasedthe reportedperformanceby 30percent.

4 Conclusion

The i860XP TM has several new features that promise great improvement over

the i860XR TM chip. The most important, from the point of view of scientific

programming, is the new quadload instruction. In the best case this instruc-

tion would lead to a 67 percent increase in peak bandwidth. However we

could only measure about 75 percent of the peak using the pipelined quad-

load instruction. The performance using the pipelined quadload instruction

was about twice that of the pipelined load instruction. When operating out

of cache, we were able to get over 80 percent of peak performance.

It is the impression of the author that the present PGI compiler showed

a great improvement over the previous version of the compiler. Most of the

compilers came within a factor of two of the NAS860 subroutines without

modification. On many subroutines simple modifications improved perfor-

mance markedly. We look forward to continued improvements in the com-

piler.
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